Observation of high energy cosmic rays below 10¹⁷ eV

M. Bertaina Torino University and INFN

Symposium on "The Recent Progress of Ultra-high Energy Cosmic Ray Observation" 2010/12/10-12, Nagoya, JAPAN

Features and problems: $S(E_0)^*E_0^3$

Features and problems: $S(E_0)^*E_0^3$

Technical: direct to ground based experiments

Techniques (E < 10¹⁶ eV)

Туре	Technique	Energy Range	Example of experiments & sensitive components	
direct	spectrometer	1 - 1000 GeV	AMS (p,He), BESS (p,He), HEAO (CNO,Fe), PAMELA (p,He)	
direct	calorimeter	30 GeV – 500 TeV	ATIC (all), CREAM (all), TRACER (O-Fe)	
direct	emulsion chambers	10 – 500 TeV	JACEE, RUNJOB (all)	
indirect	hadron calorimeter	500 GeV – 1 PeV	KASCADE, EAS-TOP (p)	
indirect	muon spectrometer	100 GeV – 10 TeV	L3+C (mostly p & He)	
indirect	Cherenkov	15 – 150 TeV	Hess (Fe)	
indirect	Cherenkov + TeV μ	50 – 300 TeV	EAS-TOP/MACRO (p,He,CNO)	
indirect	emulsion chambers, burst detectors	5 – 300 TeV	Tibet ASγ (p,He)	
indirect	RPC carpet	5-250 TeV	ARGO (p+He)	
indirect	Cherenkov	1PeV – 10 PeV	TUNKA-25 (all)	
indirect	Ν _e -Ν _μ (GeV)	100 TeV – 10 PeV	GRAPES,EAS-TOP,KASCADE (all)	

CREAM 10¹²<E<10¹⁴ eV

also sees different spectral index between H and the other elements

The change of spectral index occurs also for C-Fe in the same energy range (100-200 GeV/n) as for PAMELA

MACRO and EAS-TOP are separated by 1100 - 1300 m of rock corresponding to a threshold $E_{\mu} \approx 1.3 - 1.6$ TeV.

Primary

THE EAS-TOP CHERENKOV DETECTOR

Trigger threshold: $N_{phe,th} = 120 \text{ phe} / \text{mirror} (E_{thr} \approx 40 \text{ TeV} \text{ at } r = 130 \text{ m})$ Trigger rate: 7 Hz/telescope Cherenkov event: coincidence in $\Delta T = 30$ ns , between any 2 corresponding PMs.

5

MACRO (as a µ detector): - EAS from primaries with $E_n > 1.3 \text{ TeV/n}$ - EAS geometry through the μ track (~20 m uncertainty) исріп. этоу ш м.с. $E\mu^{th} \sim 1.3 \text{ TeV}$

TeV anisotropy

A. A. Abdo et al, Phys. Rev. Letters 101 (2008) 221101

ICECUBE

Abbasi, R. et al, The Astrophysical Journal Letters 718, L194, 2010

Summary

Is the spectral difference between H and He an indication that there are different types of sources or mechanisms of acceleration? (Biermann, A&A 271, 649,1993;Biermann et al. PRL 103, 061101, 2009; ApJ 710, L53,2010)

The flattening of the elemental spectra is an indication that: The source spectra are harder than previously thought? If it is not acceleration or propagation related, are we seeing a local source? (Erlykin & Wolfendale A&A 350)

Is the TeV anisotropy connected with what is observed by direct experiments?

Different techniques can be employed by ground based experiments to study cosmic ray flux and composition in the TeV region. The results are in a general agreement with the measurements performed by balloons and satellites.

Experimental results at knee energies The change of slope is observed in the spectra of all EAS components

sum of al

Mass group spectra from Ne – N μ (GeV): E = 1 - 30 PeV

KASCADE (110 m a.s.l.)

Composition studies by KASCADE collaboration: Astrop.Phys. 24 (2005) 1, Astrop.Phys. 31 (2009) 86

Searched:

E and **A** of the Cosmic Ray Particles <u>Given:</u>

 N_e and N_u for each single event

primary energy E _ [GeV]

solve the inverse problem

 $g(y) = \int K(y,x) p(x) dx$

with
$$y=(N_e, N_{\mu}^{tr})$$
 and $x=(E, A)$

e/γ - detector (liquid scintillator) - lead/iron absorber

~muon detector (plastic scintillator)

KASCADE

QGSjet01/FLUKA

Knee H ~ ($3 - 4 \times 10^{15}$ eV) Knee He ~ 8 × 10¹⁵eV No knee in other spectra

QGSjetII/FLUKA

Knee $H \sim (3 - 4 \times 10^{15} eV)$ Knee He $\sim 8 \times 10^{15} eV$ Knee CNO $\sim (2-3 \times 10^{16} eV)$ Knee Si $\sim 4 \times 10^{15} eV$

SIBYLL/FLUKA

Knee H ~ ($3 - 4 \times 10^{15}$ eV) Knee He ~ 8 × 10¹⁵eV Knee CNO ~ (2-3 x 10¹⁶ eV) Knee Si ~ 4x10¹⁵ eV

EPOS1.99/FLUKA

Knee H ~ ($6 - 7 \times 10^{15}$ eV) No knee in other spectra Almost no Fe

EAS-TOP (2005 m a.s.l.) & MACRO

EAS-TOP Ne-Nµ (GeV)

EAS-TOP/MACRO Ne-Nµ (TeV)

EAS-TOP & MACRO (TeV µ)

<dieter.heck@ik.fzk.de> NEEDS-Workshop, Karlsruhe, April 18-20, 2002

GRAPES-3 (Ooty, India 2200 m a.s.l.)

400 scintillators 560 m² tracking μ detector (E μ > 1 GeV) 3x10¹³ eV < E < 3x10¹⁶ eV

Overlap with direct meas. Knee by light primaries

SIBYLL QGSjet

Diamonds: JACEE
 Stars: RUNJOB
 ¹⁰⁶ Triangles: Ryan/SOKOL

All-particle Spectrum

Sunil Gupta, ISVHECRI 2010

GAMMA: Mt Aragats, Armenia 3200 m a.s.l. (~700 gr/cm²)

Energy spectra for the primary nuclei groups

ARAGATS scientific station (late autumn) Hill sides of the Mt. Aragats, Armenia, 65 km from Yerevan Elevation: 3200 m a.s.l. (700 g/cm² of atmospheric depth) Geographical coordinates: Latitude = 40.470 N, Longitude = 44.180 E

GAMMA facility (2003-2008)

Knee due to the light elements

Astroparticle Physiscs, 28 (2007) 169

TUNKA-25 Cherenkov array, Siberia 675 m a.s.l.

- YAKUT\$K

- AGASA - HIRES1

HIRES2

AUGER (COMB)

19

) 20 log₁₀(E₀/eV)

- AUGER (SD)

 10^{26}

10²⁵

 10^{24}

15

16

17

18

- HEGRA

TUNKA

- TIBET

🔺 – MİSU

- EAS-TOP

- KASCADE

|∗E₀³ (m⁻²∗sec⁻¹*sr⁻¹*e\²)

Mean mass composition

V. Prosin, *Highlights of Astroparticle Physics* Torino, 2010

- Composition before the knee and in the knee is light 70% of p+He, 30% of others.
- 2. Composition at $3 \cdot 10^{16}$ is heavy 30% of p+He, 70% of others.

Tibet ASγ – 4300 m a.s.l. Yangbaijing

Design of Emulsion Chamber and Burst Detector

M. Shibata, CRHEU 2007.3.8.

γ families

 γ and e (> TeV) enter to EC with lateral spread of several cm.

They develop into cascade showers and shower spots are registered by X-ray films which consist of 6 layers.

Burst Detector below EC records the burst size, the position and arrival time stamp.

(4 PD are equipped at each corner of the BD.)

P, He by Tibet hybrid Experiment (Phys. Lett. B, 632, 58 (2006))

1) Our results shows that the main component responsible for the knee structure of the all particle spectrum is heavier than helium nuclei.

2) The absolute fluxes of protons and helium nuclei are derived within 30% systematic errors depending on the hadronic interaction models.

Jing Huang (ISVHECRI 2008-PARIS)

SYBILL works better when comparing Tibet and Kascade!

In this analysis the fit of the data is done in the following way: $dN/dE = N_0 E^{-\gamma}$

•The flux in the hundreds GeV region, as measured by <u>spectrometers, provides the N_0 parameter</u>. The uncertainty on N_0 is given by the discrepancy on the flux measured by different experiments (AMS, BESS, etc..).

•<u>The slope γ of the spectrum is obtained</u> through the fit of the experimental data in the TeV region (1 – 1000 TeV) which is dominated by the results of the direct measurements.

•Data of the EAS arrays in the PeV region are used only as a guidance to operate selections on the data to be fitted in the TeV region, if needed (like for the He spectrum where results of the experiments do not fully agree among each others).

More details in: M. Bertaina et al., Journal of Physics: Conference Series, 120 (2008) 062023

Proton _{γ=2.75}

Helium γ =2.61

<u>Assumptions</u> How well do these fits of the mass groups reproduce the all particle spectrum?

•The spectra of H, He, CNO and Fe groups are given by the fits here presented (tuned inside their uncertainties).

•The spectra of the other elements are taken from: Wiebel-Sooth et al., Astron. Astrophys. 330 (1998) 389.

•The all particle spectrum is taken from the following compilation: J. Hörandel, Astroparticle Physics 19 (2003) 193.

•The knee of the He component (the dominant one at the knee) is set at $E_{k,He}=3.5\cdot10^{15}eV$ (coincident with the knee in the all particle spectrum).

•The knees of the single mass groups follow a rigidity dependence $E_{k,Z}=Z \cdot E_{k,p}$.

•All the components have a common γ after the knee: $\gamma = 3.3$.

All particle spectrum (10 TeV – 10 PeV)

Sharp knee from AS y and single source interpretation

$$\frac{dj}{dE} = j_0 E^{-\gamma} (1 + E/\varepsilon_b)^{-\Delta\gamma} h(E)$$

$$\varepsilon_b(z) = z \times \varepsilon_b(p) \quad \varepsilon_b(p) = 7 \times 10^{14} \text{ eV}$$

$$h(E) = 1 - \exp[-(\frac{E}{a})^{1.3}]$$

Fig. 4. All-particle spectrum around the knee. Solid line is the global component calculated by present model. Dashed line is the fit to the excess component seen in Tibet 3 data [5] which can be approximated as $f_x(E) \propto E^{-2} \exp(-E/4\text{PeV})$. The dot-chained line is the sum of the global component and $f_x(E)$

$\Delta \gamma = 0.4 \pm 0.1$

M.Shibata et al, The Astrophysical Journal, 716 (2010) 1076

The Single Source Model

The essence of the Single Source Model of the knee is the non-uniform, stochastic distribution of CR sources in space and time.

The knee is due to the contribution of the nearby and recent supernova explosion.

Sharpness of the knee:

$$S = \frac{d\gamma}{d(\log E)} = -\frac{d^2(\log I)}{d(\log E)^2}$$

S does not depend on absolute values of I and γ

A. Erlykin & A. Wolfendale *B. A&A* **350, L1,** 1999

Deviations from the smooth fit in the new data confirm the irregularity at log(E/Ek)=0.5-0.6 ('CNO peak') and reveal the possible existence of the peak at log(E/Ek)=1-1.2 ('Fe peak')

General Conclusion (A. Erlykin, ECRS2010)

New data manifest substantial non-uniformity of the CR source distribution in space and time and the evidence in favor of the presence of a 'Single Source' is even stronger than before

All-particle spectra and pulsar Fe component

All-particle energy spectrum and expected energy spectra obtained from EAS inverse problem solution for p, He, O and Fe primary nuclei using twocomponent parametrization along with energy spectra of Galactic p, He, O and Fe components and with additional Fe component from compact objects

!!! Two-component all-particle spectrum (bold line with shaded area) agree within the errors with the results of the event-by-event analysis !!! 37

Martirosov, ISVHECRI 2010

- Knee is not related to a change in the interaction mechanism.
- Knee can be interpreted as the maximum energy for acceleration in SNR and/or diffusion in the galaxy.
- Spectra of different elements change the slope at energy E^{knee}_Z = Z E^{Knee}_p
- The SNR spectrum would extend to a maximum energy for iron E^{max}_{Fe}=26E^{max}_p

AND

Single source model(s)?

Need to precisely measure the spectrum & composition at 10¹⁶ eV<E<10¹⁷ eV

The transition from galactic to extra-galactic radiation

★ "mixed composition model" (Hillas, Allard, et al.) \rightarrow in the field of the SM,

extra contribution of galactic CRs up to $E > 10^{18} eV$ \rightarrow raise of extragalactic component just at the highest energies, from early active sources, with spectrum E^{-2.3}

- ★ "dip model" (Berezinsky et al.)
- → break of galactic component at ~ 10¹⁷ eV
- → raise of purely extragalactic p
- \rightarrow AGNs as sources, spectrum E₂^{-2.7}

Experiments Operating in the 10¹⁶<E<10¹⁸ eV energy range (a bridge towards UHECR experiments)

- KASCADE-Grande (Nch Nµ)
- IceTop/ICECUBE (Nch TeV μ)
- Tunka-133 (Cherenkov)
- HEAT+Infill+Amiga (Fluo,Nch, μ)

• LOPES, Codalema, AERA (Radio)

operating, established techniques

test of principle, hopefully physics

planned

• TALE (Fluorescence)

S. Klepser@ECRS2008

- Construction Completed in 2011
- Ice Top resolutions (0° < θ <30°)
 - Core position ~9m, Arrival direction ~1.5°
 - Energy (E>3PeV) ~16% in E,

Full Efficiency >1PeV

Preliminary results on energy spectrum expected in 2011

KASCADE-Grande features and performances

KASCADE:

 \rightarrow energy range $10^{14} - 10^{16} \text{ eV}$

→ 252 detector stations over 200x200 m²
 → in a station: measurement of e and µ
 separately with two co-located types
 of detector scintillators

Grande:

→ 37 detector stations 10 m² each spread over 700 x 700 m²

 \rightarrow in a station: measurement of all-charged e + μ

→ 18 hexagonal clusters. 7 out-of-7 coincidence triggers data acquisition

Upper view and Bottom view of a Grande station

Good agreement between the reconstruction accuracies of the 2 detectors

Reconstruction of the energy spectrum

We use three different methods:

- •N_{ch} as observable
- $\bullet N_{\mu}$ as observable
- •Combination of N_{ch} and N_{μ} as observables

Cross check of reconstruction procedures
Cross check of systematic uncertainties
Test sensitivity to composition
Cross check of validity of hadronic interaction models

If not explicitly mentioned in the following CORSIKA QGSjetII/FLUKA interaction model is used

*additional method to reconstruct the energy spectrum employs the particle density at 500 m (S500)

Table of systematics on the flux

Source of uncertainty	10 ¹⁶ eV	10 ¹⁷ eV	10 ¹⁸ eV
	(%)	(%)	(%)
Intensity in different angular bins (attenuation)	10.2	9.3	13.0
Calibration & composition	10.8	7.8	4.4
Slope of the primary spectrum	4.0	2.0	2.1
Reconstruction (shower sizes)	0.1	1.3	6.6
TOTAL	15.4	12.4	14.7
Other uncertainties	%	%	%
Sudden knee structures (extreme cases)		<10	
Hadronic interaction model (EPOS-QGSjet)	-5.4	-12.3	-9.5
Statistical error	0.6	2.7	17.0
Energy resolution (mixed primaries)	24.7	18.6	13.6

Comparing the 3 methods (dl/dE x E³)

Residual plot

 $F_{test} = (\chi^2_{single power law} / m) / (\chi^2_{function} / n), with m,n = ndf single power-law, function$

Variance = $2n^{2}(m+n-2) / m(n-2)^{2}(n-4)$

Significance in units of the standard deviation = F_{test} / $\sqrt{Variance}$

2nd knee

20

Table 2. Our broken power law fits to spectrum measurements in the Second Knee energy range. The fit parameters include a normalization (not shown), slope parameters above and below the break and the break point energy for the Second Knee.

Experiment (reference)	χ^2/DOF	S lope below	Break point $\log_{10} \left(\frac{E}{eV}\right)$	Slope above
Akeno	8.3/13	3.04 ± 0.02	17.8 ± 0.2	3.25 ± 0.12
(Nagano et al 1992)				
Fly's Eye	13.7/18	3.04 ± 0.05	17.60 ± 0.06	3.27 ± 0.02
(Bird et al 1993)				
HiRes/MIA	2.5/5	3.02	17.6 ± 0.2	3.23 ± 0.14
(Abu-Zayyad et al 2001)				-
Haverah Park	1.4/5			3.32 ± 0.05
(Ave et al 2003a)				2
Yakutsk T-500	45.2/15			3.213 ± 0.(a
(Egorova et al 2004)				04/6
HiRes	8.55/15			3.26 ± 0.02
(Abbasi et al 2007a)				6
Global fit	109.4/93	3.02 ± 0.01	17.52 ± 0.02	3.235 ± 0.0
(at Fly's Eye E scale)				

Global fit Fly's Eye E scale:

 $Log_{10}(E/eV) = 17.52 \pm 0.02$ γ_{below} = 3.02 \pm 0.01 $\gamma_{\text{above}} \texttt{= 3.235 \pm 0.008}$

Figure 11. Left: flux measurements in the Second Knee energy range. The shown fits are our calculation. Right: flux measurements in the Second Knee energy range, scaled so that the flux agrees with the Fly's Eye result at 1018 eV. The scaled data points were fit to a broken power law spectrum in a global fit, with the result shown.

D.R. Bergman & J.W. Belz, J. Phys. G: Nucl. Part. Phys. 34 (2007) R359–R400

The all-particle energy spectrum

The spectrum is nicely connected at the knee with other experiments and points naturally to HiRes and Auger spectra at UHECR energies

Conclusions

- Different spectral indexed between H and the other elements. Change of slope for all elements around 100-200 GeV/n.What does it mean?
- Anisotropy @ TeV energies, why?
- Fairly well agreement between direct and indirect measurements in the TeV region.
- The majority of experiments show a dominance of light primaries at the knee and He main candidate for it. However, still source of debate – see e.g.Tibet ASγ.
- Rigidity dependent knees.
- Single Source model(s)?
- Where does the transition between galactic and extragalactic components occur?

What can we learn at E<10¹⁷ eV in the near future?

- Extension of the direct measurements up to 10¹⁵ eV (ex. CALET on ISS)
- Better understanding of the interaction models from accelerators (ex. LHCf, TOTEM)
- Composition studies by YAC/MD Tibet ASγ (main knee), KASCADE-Grande, ICECUBE, Tunka-133, GRAPES (10¹⁶ – 10¹⁸ eV)

THE END

Towards the composition

- •The Energy spectrum shows interesting structures.
- •The composition analysis is crucial to try to understand their origin.
- The composition analysis is under study using different approaches (all based on N_{ch}-N_μ observables and QGSjet model) like we did for the Energy spectrum to have a coherent result and check systematics for each technique:
 - K parameter
 - Separation in light & heavy spectra
 - KNN technique
 - N_{μ}/N_{ch} distributions in bins of N_{ch}
 - unfolding

N_{ch}/N_{μ} distributions

- The sensitivity to primary composition: data, in different arrival directions and charged size intervals, are compared with simulations, performing a χ² fit with a linear combination of different primary contributions
 - first step for further composition studies
 - perform a check on used interaction model

E. Cantoni, CRIS 2010

DATA

Single and All-particle spectra by CREAM

Comparison with KASCADE & EAS-TOP

