

Energy measurement and spectrum by TA

IKEDA Daisuke ICRR, University of Tokyo for the Telescope Array Collaboration

Contents

- Introduction
- TA FD
- Calibration
- Monte Carlo
- Data analysis
- Conclusion

Fluorescence Technique

TA Fluorescence Detector

Telescope Array Experiment

Desert in Utah, US (1400m a.s.l.)
507 Surface Detectors (SDs)

1.2km spacing
Two layers of plastic scintillator, 3m², 1.2cm thickness

S Fluorescence Detectors (FDs)

Middle Drume (MD) station is transferred from HiRes.

•FD observation : from Nov/2007 •SD observation : from Mar/2008

FD at **BR/LR** station

BR/LR site : **new** telescopes

Electronics (trigger)

Calibration

Telescope Calibration (PMT Gain)

Scintillator and RI

as a stable light source

•Relative gain: Xe flasher

Xe discharge flasher as a uniform light source

Adjusted about 1% for all PMTsMonitoring in every 1hour

•Temperature dependence Measured by Incubator and LED

~-0.72%/degree

Telescope Calibration (Other components)

Mirror reflectance

Monitored by handy spectrometer (KONICA MINOLTA CM-2500d)

•PMT Uniformity

XY-Scanner (4LEDs, 4mm step)

•PMT QE

Measured by HAMAMATSU

position (mm)

Total systematic error in detector:10% (8% of CRAYS, 5% of mirror, 3% of aging)

450

Fluorescence yield

Currently, we use FLASH model scaled by Kakimoto model

•Kakimoto model was used in HiRes experiment

•TA has HiRes refurbished detector (MD station)

Currently, the humidity dependence (~5% near ground) is not corrected.

Total systematic error in FL yield:12% (10% of model, 5% of humidity, 3% of atmosphere)

Atmosphere

Two components of attenuation: Molecule (Rayleigh) + Aerosol

calculation (well known)

Atmospheric parameters :Radiosonde

Every 12hours

Aerosol: LIDAR

measurement

$$T_{Mie} = \int_{h_0}^{h_1} \exp\left\{-\alpha_{Mie}(h)\right\} dh / \sin\theta$$

$$\alpha_{Mie}(h) = \lambda \exp(-h/H)$$

Currently, we use typical value:

- •Attenuation length (λ) : 29.4km
- •Scale height (H): 1.0km

The details of atmospheric calibration are described in the poster by Tomida(P-102)

Total systematic error in atmosphere:11% (10% of aerosol, 5% of Rayleigh)

Monte Carlo

Air shower simulation COSMOS/CORSIKA

Items	COSMOS	CORSIKA
Primary energy	$10^{18} eV \simeq 10^{20.5} eV$	10 ¹⁸ eV~10 ^{19.5} eV
Zenith angle	cosθ=0.65 (≒50degrees) ~ 1	0~60degrees
Primary particle	Proton	Proton / Iron
Thinning ratio	10 ⁻⁴ (< 10 ²⁰ eV), 10 ⁻⁵ (≥ 10 ²⁰ eV)	10-4
Interaction model	QGSJET II	QGSJET01, QGSJET-II, SYBYLL
Cut threshold energy	100keV	100keV

Missing energy •Difference b/w primary energy and integrated energy of fitted G.H. function •Muon / Neutrino •Difference b/w true development and G.H. function •Obtained missing energy is ~8% •Difference b/w COSMOS and CORSIKA: <1%

MC Simulations Detector MC

FDMC (JAVA)

Not only Fluorescence but also Cherenkov (Nerling)
Calibration factors with time dependence
PMT gain, mirror reflectance, back ground...

•Same as data analysis

•Calibrated geometry of telescopes by star monitoring

 We can see the star directly from baseline of waveform

•DC- coupling

Data analysis

Analysis flow

Pre reconstruction

Geometry (Stereo)

Geometry (Hybrid)

Longitudinal development Inverse Monte Carlo method

The detected photons are not so simple!!

- •FL light and Cherenkov light
- •Atmospheric transparency
- •Obstruction by the telescope structure
- •Gap of segment mirrors
- Uniformity on cameras

These factors are irreversible.

- •Direct comparison b/w data and MC on cameras
- •All of effect can be included
- Database of detector response
 - •High speed/statistics

How to determine the X_{max} and primary energy ?

The details of the analysis method are described in the poster by Fujii (P-101)

Results

Energy spectrum

TA 1.5 years of hybrid events on BR and LR station

Systematic errors

The energy scale of TA FD is almost same as HiRes.

In future...

•Systematic error

Item	Currently	Future (w/ ELS)	•Measurement is
Fluorescence yield	12% Measurement(10%), Atmosphere(3%), Humidity(5%)	8% ELS (5%),	•The dew-points
Detector	10% PMT(8%), Mirror(5%), Filter(1%), Aging(3%)	Humidity(5%)	Radiosonde.
Atmosphere	11% Mie(10%), Rayleigh(5%)		 Currently, we use one typical value.
Primary particle mass	5%		
MC correction	3%	1%	Total systematic
Total	19%	15%	error will be reduced to 10~15%.

Conclusion

- To determine the UHECR energy, we have to understand
 - Calibration
 - Monte Carlo of Air shower / Detector
 - Analysis method
- Our status was presented
 - Systematic error is ~19%
- Our energy scale is in good agreement with HiRes
- In future, our systematic error will be improved by ELS and atmospheric calibration.