

Measurement of UHECR Composition by HiRes

John Belz UHECR2010 Nagoya, Japan 10-12 December 2010

Spectrum: Implications for Composition

- CMBR: Two signatures in spectrum
 - Photoproduction of pions ("GZK Cutoff")
 - Pair production "dip" at lower energy
- Three model independent clues to composition
 - Energy of cutoff
 - Shape of spectrum close to cutoff
 - Shape of pair production "dip"

Energy of Cutoff

- Characterized by $E_{1/2}$; energy at which integral spectrum drops to $\frac{1}{2}$ of power law extrapolation.
- Berezinsky et al, PRD 74 (2006): log(E) = 19.72
- HiRes: $log(E) = 19.73 \pm 0.07$

Shape of Spectrum above Cutoff

- Generally, depends on source density and energy cutoff.
- *Model independent* near cutoff
- Consistent with HiRes observations, although statistics low.

Pair Production "Dip"

- 2nd indication of CMBR interactions: Photons pair produce in presence of high-energy nucleon
- Presence, shape essentially *model independent,* provided primaries are protonic. Aloisio et al *Astropart. Phys.* **27** (2007).
- Consistent with "ankle" feature observed by HiRes (also AGASA, Yakutsk, PAO...)

Alternatives

- Ankle is galactic-toextragalactic transition, e.g. Hillas, Nucl. Phys. Proc. Supp. 136 (2004).
- Should be accompanied by heavy (galactic) to light (extragalactic) composition change.
- Decisive role for composition studies!

Composition Studies via Depth of Airshower Maximum X_{max}

X_{max} and Composition

Average Position of Shower Maximum:

$$\langle X_{max} \rangle = \lambda_r \left(\ln \frac{E}{E_c} - \ln A \right) + C$$

Evolution with Energy:

$$\Lambda_A = \frac{d \langle X_{max} \rangle}{d \log E} \approx \lambda_r \left(2.3 - \frac{d \ln A}{d \log E} \right)$$

Width of X_{max} Distribution (Superposition):

$$\sigma_x(A) \sim \frac{\sigma_x(P^+)}{\sqrt{A}}$$

X_{max} versus log(E)

Points available at: www.cosmic-ray.org/journals/prl.html ¹³

X_{max} versus log(E)

Points available at: www.cosmic-ray.org/journals/prl.html 14

Comparing Mean X_{max} to Expectation

- No model-independent way to determine composition via X_{max}.
- Simulated airshowers are mandatory, as is understanding detector response to these airshowers.
- Use full detector simulation to model the response to simulated airshowers:
 - Atmosphere (hourly)
 - Ray tracing fluorescence light to mirrors and camera
 - Simulated PMT response
 - Simulated trigger
 - Full analysis chain

X_{max} vs Energy, QGSJET-II Protons

X_{max} vs Energy, QGSJET-II Protons

Biasing Effect: Optical Aperture

- Are upper and lower limitations on field of view
 (FOV) well understood?
- If not, relative to MC
 - Can shift mean X_{max} by cutting low or high tails
 - Can make X_{max}
 distribution appear
 artificially narrow or wide

Protons

Protons

21

Protons

Check of X_{max} Resolution

Protons

X_{max} vs Energy, HiRes Stereo Data

QGSJET-II Protons

HiRes Stereo Data

Elongation rate: Evolution of Mean X_{max} with Energy

- Each distribution replaced with a single number representing the mean airshower maximum.
- Comparison with 3 highenergy hadronic interaction models. For each, expectation after detector effects is shown.

Elongation rate: Evolution of Mean X_{max} with Energy

- Each distribution replaced with a single number representing the mean airshower maximum.
- Comparison with 3 highenergy hadronic interaction models. For each, expectation *after* detector effects is shown.
- HiRes rules out models in which "ankle" is location of galactic-to-extragalactic transition. (Berezinsky, 2007 ICRC)

Elongation Rate

- Acceptance bias is energy independent.
 Allows linear fit to determine E.R.
- Linear fit consistent with constant elongation rate, i.e. constant composition.

Other Clues to Composition: Shape of X_{max} Distribution

HiRes Data

Width of X_{max} Distribution vs Energy

- Define width as σ of Gaussian, truncated at 2xRMS
 - Focus attention on core of distribution
 - Avoid RMS undersampling bias
- Data consistent with QGSJET-II protons

Study Distributions via KS-Tests

- KS p-value handles statistical limitations fairly.
- First question: Do highand low-energy halves of HiRes data above 10 EeV exhibit narrowing?
- Shift distributions to account for elongation rate...

Study Distributions via KS-Tests

Study Distributions via KS-Tests

- Bin-by-bin evaluation of the shape of X_{max} distributions
- Protons: Perform direct KS tests between data and QGSJET-II proton distributions, in energy bins.
- Iron:
 - Perform direct KS tests, in energy bins
 - Shift iron mean X_{max} to agree with data. Perform KS test to compare *shape* of distributions.

Protons

max

HiRes Spectrum and Composition: Synthesis

- HiRes data explained in all particulars by QGSJET01 & II proton Monte Carlo
 - Does QGSJET describe real protons at these energies?
 - Mixed models (e.g. Sibyll) require unchanging elongation over two orders of magnitude!
- Proton composition consistent with spectral observations.
 - Location and shape of cutoff
 - Shape of ankle .
- Synthesis HiRes spectral and composition results can be explained with a simple model: Cosmic rays above 1 EeV are protons of extragalactic origin. The high-energy spectrum is shaped by interactions of these protons with the CMBR.
- R. Abbasi et al., Phys. Rev. Lett. 104 (2010).
- Points available at: www.cosmic-ray.org/journals/prl.html ⁴⁹