Composition with Auger

M. Unger for the Pierre Auger Collaboration

Composition Parameters under Study

0.2

0.24

0.22

0.18

muon production depth

energy deposit profile

rise time asymmetry

19.2 < lg(E/eV) < 19.5

Measurement of the Shower Maximum with FD

Measurement of the Shower Maximum with FD

Definition of Xmax

C.L. Pryke, APP14 (2001), 319

J. Belz, Bartol workshop 2009

differences $\gtrsim 10 \text{ g/cm}^2$?!

Definition of Xmax

Field of View Bias

Illustration with CONEX Simulations

dN/dcos $\theta \propto \cos \theta$, R_{max}=30 km

Illustration with CONEX Simulations

dN/dcos $\theta \propto \cos \theta$, R_{max}=30 km, max. viewable depth>950 g/cm²

Field of View Bias - Detector Simulation

Field of View Bias - Detector Simulation & Data

Field of View Cuts - Data $10^{18.0}-10^{18.1}\ \text{eV}$

Validation of full Analysis Chain

lines: 'true' values, dots: 'measured' values

 \rightarrow need excellent $X_{max}\text{-}resolution$ for p/Fe discrimination!

quoted resolution: HiRes/TA: Gaussian σ , Auger: standard deviation (RMS)

Auger Stereo-Hybrids:

- independent geometries
- similar detectors

standard deviation of $X_{max}(rec) - X_{max}(true)$

▶ syst. $\langle X_{max} \rangle \le$ 13 g/cm², syst. RMS \le 6 g/cm²

- RMS is corrected for resolution
- ▶ elongation rate: (24 \pm 3) g/cm 2 /decade above 10 $^{18.24\pm0.05}$ eV
- comparison to CONEX simulation

▶ syst. $\langle X_{max} \rangle \le$ 13 g/cm², syst. RMS \le 6 g/cm²

- RMS is corrected for resolution
- ▶ elongation rate: (24 \pm 3) g/cm²/decade above $10^{18.24\pm0.05}$ eV
- comparison to CONEX simulation

▶ syst. $\langle X_{max} \rangle \le$ 13 g/cm², syst. RMS \le 6 g/cm²

- RMS is corrected for resolution
- ▶ elongation rate: (24 \pm 3) g/cm²/decade above $10^{18.24\pm0.05}$ eV
- comparison to CONEX simulation

 $\blacktriangleright\,$ syst. $\langle X_{max}\rangle \leq$ 13 g/cm², syst. RMS \leq 6 g/cm²

- RMS is corrected for resolution
- ▶ elongation rate: (24 \pm 3) g/cm²/decade above $10^{18.24\pm0.05}$ eV
- comparison to CONEX simulation

Suggestions

Can we agree on a

common theoretical definition of X_{max}?

Can we compare the p/Fe sensitivity

- quoting the full width of X_{max} resolution?
- Is it possible to directly compare results after
 - correction of (X_{max}) and RMS for detector effects?

backup slides ...

Systematics

Biased estimator RMS?

