

Measurement of UHECR composition by TA

Y. Tameda, for the Telescope Array Collaboration The University of Tokyo, Institute for Cosmic Ray Research

Outline

- Xmax Technique
- FD Stereo Measurement
- Monte Carlo
 - Air Shower Monte Carlo
 - Detector Monte Carlo
 - Data/MC Comparison
- Results

Xmax technique

- Shower longitudinal development strongly depends on their primary particle type.
- FD observes shower development directly.
- Xmas is one of the most efficient parameter for determining primary particle type.

FD Stereo measurement

Geometrical reconstruction

Determination of shower axis by stereo reconstruction is much better than monocular reconstruction.

Opening angle by monocular reconstruction is $\sim 5 \text{deg}(1 \sigma)$.

Resolution of TA-FD Stereo analysis @10^{19-19.2}eV

Resolution of TA-FD Stereo analysis @10^{19-19.2}eV

100

6 100

FD Stereo Event

Date	log(E/eV)	Xmax	zenith	azimuth	Xcore	Ycore
2008/09/04	19.71	890 g/cm ²	44.3°	-3.0°	-3.1	14.2

Air Shower Monte Carlo

- 1. Distribution of Energy and Xmax
- 2. Systematic study for TA FD stereo
- 3. Expected Energy vs Xmax observed by TA FD

CORSIKA v6.9

- Hadronic interaction model
 QGSjet-01, SIBYLL
- Primary : P, Fe
- Energy : log(E) = 18.0 - 20.0
- Zenith angle : 0 65 deg
- ~1400m a.s.l (Height of TA Site)
- Thinning factor : 10⁻⁴
 Ecut: EM100keV, hadron100MeV

Detector Monte Carlo

Detector simulation

- Shower generator : CORSIKA
- Shower cores: within 20km from the center of F.O.V. of each station.
- Actual detector configuration
- Typical atmosphere Aerosol : typical value observed by LIDAR scale height : 1.0km, mean free path : 29km
- Fluorescence model: Kakimoto et al., Flash (spectrum)

Prediction of Averaged Xmax CORSIKA

UHECR2010@Nagoya

Prediction of Averaged Xmax CORSIKA with Detector MC

MC/Data Comparison

- Data set: 2007/Nov 2010/Sep
- FD Stereo events
- Comparison with MC
- Quality Cut Xmax observed Zenith < 60° Core within 19.6km circle Energy > 10^{18.0}eV χ² cut

MC/Data Comparison (QGSJET01)

10^{18.8-19.0}eV (47events)

UHECR2010@Nagoya

Results

Xmax Distribution (QGSJET01)

Xmax Distribution (QGSJET01)

UHECR2010@Nagoya

Averaged Xmax

Averaged Xmax

10.12.11

UHECR2010@Nagoya

18

Conclusion

- Data: Stereo events 2007/Nov 2010/Sep
- Good agreement in Data/MC comparison
 Detector performance is well understood by MC.
- Energy vs Xmax distribution expected to be observed at TA-FD is estimated by CORSIKA for hadronic models of QGSJET01 and SIBYLL with detector simulation.
- Composition is determined by the comparison between Data and MC.
- Distribution of Xmax is **consistent with Proton** (QGSJET01).
- Averaged Xmax is consistent with Proton (QGSJET01).

profile fitting

 N_{pe}^{PMT} : detected photoelectrons for PMT $N_{pe}^{A/\prime}$: photoelectrons of All $N_{pe,raw}^{PMT}$: photoelectrons from raw data

