Measurement of the Energy Spectrum by the Telescope Array Surface Detector

Benjamin Stokes University of Utah

Telescope Array Collaboration

T Abu-Zayyad¹, R Aida², M Allen¹, R Azuma³, E Barcikowski¹, JW Belz¹, T Benno⁴, DR Bergman¹, SA Blake¹, O Brusova¹, R Cady¹, BG Cheon⁶, J Chiba⁷, M Chikawa⁴, EJ Cho⁶, LS Cho⁸, WR Cho⁸, F Cohen⁹, K Doura⁴, C Ebeling¹, H Fujii¹⁰, T Fujii¹¹, T Fukuda³, M Fukushima^{9,22}, D Gorbunov¹², W Hanlon¹, K Hayashi³, Y Hayashi¹¹, N Hayashida⁹, K Hibino¹³, K Hiyama⁹, K Honda², G Hughes⁵, T Iguchi³, D Ikeda⁹, K Ikuta², SJJ Innemee⁵, N Inoue¹⁴, T Ishii², R Ishimori³, D Ivanov⁵, S Iwamoto², CCH Jui¹, K Kadota¹⁵, F Kakimoto³, O Kalashev¹², T Kanbe², H Kang¹⁶, K Kasahara¹⁷, H Kawai¹⁸, S Kawakami¹¹, S Kawana¹⁴, E Kido⁹, BG Kim¹⁹, HB Kim⁶, JH Kim⁶, JH Kim²⁰, A Kitsugi⁹, K Kobayashi⁷, H Koers²¹, Y Kondo⁹, V Kuzmin¹², YJ Kwon⁸, JH Lim¹⁶, SI Lim¹⁹, S Machida³, K Martens²², J Martineau¹, T Matsuda¹⁰, T Matsuyama¹¹ JN Matthews¹, M Minamino¹¹, K Miyata⁷, H Miyauchi¹¹, Y Murano³, T Nakamura²³, SW Nam¹⁹, T Nonaka⁹, S Ogio¹¹, M Ohnishi⁹, H Ohoka⁹, T Okuda¹¹, A Oshima¹¹, S Ozawa¹⁷, IH Park¹⁹, D Rodriguez¹, SY Roh²⁰, G Rubtsov¹², D Ryu²⁰, H Sagawa⁹, N Sakurai⁹, LM Scott⁵, PD Shah¹, T Shibata⁹, H Shimodaira⁹, BK Shin⁶, JD Smith¹, P Sokolsky¹, TJ Sonley¹, RW Springer¹, BT Stokes¹, TA Stroman¹, SR Stratton⁵, S Suzuki¹⁰, Y Takahashi⁹, M Takeda⁹, A Taketa⁹, M Takita⁹, Y Tameda³, H Tanaka¹¹, K Tanaka²⁴, M Tanaka¹⁰, JR Thomas¹, SB Thomas¹, GB Thomson¹, P Tinyakov^{12,21}, I Tkachev¹², H Tokuno⁹, T Tomida², R Torii⁹, S Troitsky¹², Y Tsunesada³, Y Tsuyuguchi², Y Uchihori²⁵, S Udo¹³, H Ukai², B Van Klaveren¹, Y Wada¹⁴, M Wood¹, T Yamakawa⁹, Y Yamakawa⁹, H Yamaoka¹⁰, J Yang¹⁹, S Yoshida¹⁸, H Yoshii²⁶, Z Zundel¹

¹University of Utah, ²University of Yamanashi, ³Tokyo Institute of Technology, ⁴Kinki University, ⁵Rutgers University, ⁶Hanyang University, ⁷Tokyo University of Science, ⁸Yonsei University, ⁹Institute for Cosmic Ray Research, University of Tokyo, ¹⁰Institute of Particle and Nuclear Studies, KEK, ¹¹Osaka City University, ¹²Institute for Nuclear Research of the Russian Academy of Sciences, ¹³Kanagawa University, ¹⁴Saitama University, ¹⁵Tokyo City University, ¹⁶Pusan National University, ¹⁷Waseda University, ¹⁸Chiba University ¹⁹Ewha Womans University, ²⁰Chungnam National University, ²¹University Libre de Bruxelles, ²²University of Tokyo, ²³Kochi University, ²⁴Hiroshima City University, ²⁵National Institute of Radiological Science, Japan, ²⁶Ehime University

Outline

- Surface detector configuration
- Simulation program
 - Dethinning
 - Spectral event set generation
- Event reconstruction
 - Lateral distribution function
 - Data/Simulation comparisons
- Energy spectrum estimation

Telescope Array Surface Detector Configuration

- Located 200 km SW of Salt Lake City
- 507 surface units on 1.2 km rectangular grid
- Total area: 680 km²
- SD augmented by 3 air fluorescence stations
- SD commissioned in May 2008

SD Configuration: Surface Detector Unit

- 3 m² bi-layer scintillator
- 2 channel 50 MHz ADC readout
- Self-calibrating (via atmospheric μ⁺μ⁻)
- Solar power
- Radio Communications
- Most units require servicing less than once per year

SD Configuration: Surface Array Triggering

- Level 0: ~0.3μ equivalent (740 Hz)
 - Readout 2.5 μsec waveform to counter buffer
- Level 1: 3μ equivalent
 (30 Hz)
 - Readout L1 trigger time to central DAQ
- Level 2: 3 adjacent counters with L1 trigger within 8 μsec (5 mHz)
 - Readout to central DAQ all L0 trigger waveforms within ±32 μsec of L2 trigger

SD Configuration: Surface Detector Milestones

- 485 counters deployed:
 Mar 2007
- Test with 3 small arrays:
 Jun 2007
- Observations with 507 counters divided into 3 sub-arrays:

Mar 2008

- Thresholds stabilized:
 May 2008
- Observations with full array trigger:

Nov 2008

Simulation Program

- CORSIKA 6.960
 QGSJET-II/FLUKA
 - Parallelization
 - Dethinning
- GEANT4
- Superb detail
- Very computationally intensive

Simulation Program: Augmentations to CORSIKA

- Parallelization
 - Wrapper scripts and binaries
 - CORSIKA itself left untouched
 - 100+ showers
 - 10^{18.5} to 10^{19.5} eV
 - 0° to 60° zenith
 - p, Fe

Simulation Program: Augmentations to CORSIKA

- Dethinning
 - Change each
 CORSIKA output
 particle of weight w to
 w particles with similar
 characteristics to the
 original particle
 - Adjust dethinning parameters to agree with full CORSIKA generated via parallelization

Verifying Dethinning: Lateral Profile

Proton, 10¹⁹ eV, 30° zenith angle

ateral istance

1400m

Verifying Dethinning: Temporal Distribution

t₅₀ (μsec normal to shower front)

Verifying Dethinning: Secondary γ Spectra

Secondary Particle Energy: 250keV to 1 TeV

Verifying Dethinning: Secondary e⁺e⁻ Spectra

Secondary Particle Energy: 250keV to 1 TeV

Verifying Dethinning: Secondary μ⁺μ⁻ Spectra

Secondary Particle Energy: 250keV to 1 TeV

Simulation Program: Reproducing the Real Data Set

- CORSIKA shower library:
 - 33,000 dethinned showers
 - 10^{17.1} to 10^{20.5} eV
 - Isotropic distribution
- Calculate energy deposition for entire shower
 - GEANT4
- Simulate SD electronics repeatedly for each library element
- Select events for data set with respect to previously measured energy spectrum

SD Analysis: A Careful Analysis Method

- Simulate the data the same way it is observed.
 - Write out the MC events in same format as data.
- Use fitting functions observed by previous experiments (i.e. AGASA) to ensure model independence.
 - Analyze the MC with the same programs used for data.
- Test with data/MC comparison plots.
- If they agree, say: "I understand my detector"; otherwise, work harder.

SD Analysis: Geometric Fit

Event direction is found by minimizing:

$$\chi^{2} = \sum_{i=1}^{\text{nSDs}} \frac{\left(t_{i} - T_{0} - T_{\text{Plane}} - T_{\text{D}}\right)^{2}}{T_{\text{S}}^{2}} + \frac{\left(\vec{\mathbf{R}} - \vec{\mathbf{R}}_{\text{COG}}\right)^{2}}{\left(180\text{m}\right)^{2}}$$

 $T_{\scriptscriptstyle 0}$ Time of the core hitting ground

 $T_{
m Plane}$ Time of the shower front plane

 $T_{
m D}$ Time delay (Modified Linsley)

T_S Fluctuation of time delay (Modified Linsley)

 $\vec{\mathbf{R}}$ (Fitted) core position

Core position found from the center of gravity of charge

SD Analysis: Lateral Distribution Fit

Fit with AGASA LDF

$$ho(r) \propto \left(rac{r}{R_M}
ight)^{-1.2} \left(1 + rac{r}{R_M}
ight)^{-(\eta - 1.2)} \left\{1 + \left(rac{r}{1000}
ight)^2
ight\}^{-0.6}$$

$$\eta = (3.97 \pm 0.13) - (1.79 \pm 0.62) (\sec \theta - 1)$$

$$r = 800m$$

fit residual over sigma

SD Analysis: Fitting Results

Counter signal, [VEM/m²]

- Identical analysis routines are applied to data and Monte Carlo
- Fit results are compared between real and simulated events
- Monte Carlo fits the exact same way as the real data.
- Consistent for both geometric and lateral density fits.

SD Analysis: Data Quality Cuts

- Good data fits:
 - $\chi^2/\text{d.o.f.}$: > 4.0
 - Pointing direction resolution: < 5°
 - Fractional S800 uncertainty: < 25%
- Good shower geometry:
 - Border Cut > 1200m
 - Zenith Angle Cut: < 45°
- 1.75 years, 6264 events.

SD Analysis: Energy Determination

- Energy determination table is constructed from the fitting results of the Monte Carlo.
- First estimation of the event energy is done by interpolating between S₈₀₀ vs. secθ isoclines.

SD Analysis: Data/MC Comparisons

46296

0.9492

0.5857

Entries

Underflow

Overflow

Mean

RMS

charge/SD, w/o saturated SDs, $\frac{\chi^2}{400}$ <4, bd/st>1200m, ngsd>=5, 0<45°, pderr<5°, $\frac{\alpha_{800}}{8,000}$ <0.25, log $(\frac{E}{400})$ >18.0

4000

3500

3000

2500

1500

LDF fit χ^2/dof

VEM / counter

SD Analysis: Data/MC Comparisons

Zenith Angle, [Degree]

Zenith angle

Azimuthal angle

SD Analysis: Data/MC Comparisons

S₈₀₀

Energy

SD Analysis Angular Resolution

SD Analysis: Energy Resolution

log (E/eV)

18.5

SD Analysis: Energy Scale

- Energy scale is more accurately by FD than by simulation
- Set SD energy scale to Middle Drum (i.e. HiRes-I) FD energy scale using wellreconstructed events seen by both detectors:
- 27% renormalization.

TA Surface Detector Energy Spectrum

SD Energy Spectrum: GZK Feature

- Assume no GZK cutoff and extend the broken power law fit beyond the break
- Apply this extended flux formula to the actual TASD exposure, find the number of expected events and compare it to the number of events observed in log₁₀E bins after 10^{19.8}eV bin:

$$- N_{EXPECT} = 18.4$$

$$-N_{OBSERVE} = 5$$

PROB=
$$\sum_{i=0}^{5} Poisson(\mu = 18.4; i) = 2.41 \times 10^{-4}$$

SD Energy Spectrum: Comparison

SD Energy Spectrum: Comparison

SD Energy Spectrum: Comparison

Conclusion: A Work in Progess

- TA possesses the largest aperture for UHECR's in the Northern Hemisphere.
- SD energy spectrum measurement shows good agreement with results previously reported by HiRes.
- Data collection is ongoing.

Acknowledgments

文部科学省

MEXT

MINISTRY OF EDUCATION, CUSTURE, SPORTS, SCIENCE AND TECHNOLOGY-JAPAN

