Measurement of the Energy Spectrum by the Telescope Array Surface Detector Benjamin Stokes University of Utah ### **Telescope Array Collaboration** T Abu-Zayyad¹, R Aida², M Allen¹, R Azuma³, E Barcikowski¹, JW Belz¹, T Benno⁴, DR Bergman¹, SA Blake¹, O Brusova¹, R Cady¹, BG Cheon⁶, J Chiba⁷, M Chikawa⁴, EJ Cho⁶, LS Cho⁸, WR Cho⁸, F Cohen⁹, K Doura⁴, C Ebeling¹, H Fujii¹⁰, T Fujii¹¹, T Fukuda³, M Fukushima^{9,22}, D Gorbunov¹², W Hanlon¹, K Hayashi³, Y Hayashi¹¹, N Hayashida⁹, K Hibino¹³, K Hiyama⁹, K Honda², G Hughes⁵, T Iguchi³, D Ikeda⁹, K Ikuta², SJJ Innemee⁵, N Inoue¹⁴, T Ishii², R Ishimori³, D Ivanov⁵, S Iwamoto², CCH Jui¹, K Kadota¹⁵, F Kakimoto³, O Kalashev¹², T Kanbe², H Kang¹⁶, K Kasahara¹⁷, H Kawai¹⁸, S Kawakami¹¹, S Kawana¹⁴, E Kido⁹, BG Kim¹⁹, HB Kim⁶, JH Kim⁶, JH Kim²⁰, A Kitsugi⁹, K Kobayashi⁷, H Koers²¹, Y Kondo⁹, V Kuzmin¹², YJ Kwon⁸, JH Lim¹⁶, SI Lim¹⁹, S Machida³, K Martens²², J Martineau¹, T Matsuda¹⁰, T Matsuyama¹¹ JN Matthews¹, M Minamino¹¹, K Miyata⁷, H Miyauchi¹¹, Y Murano³, T Nakamura²³, SW Nam¹⁹, T Nonaka⁹, S Ogio¹¹, M Ohnishi⁹, H Ohoka⁹, T Okuda¹¹, A Oshima¹¹, S Ozawa¹⁷, IH Park¹⁹, D Rodriguez¹, SY Roh²⁰, G Rubtsov¹², D Ryu²⁰, H Sagawa⁹, N Sakurai⁹, LM Scott⁵, PD Shah¹, T Shibata⁹, H Shimodaira⁹, BK Shin⁶, JD Smith¹, P Sokolsky¹, TJ Sonley¹, RW Springer¹, BT Stokes¹, TA Stroman¹, SR Stratton⁵, S Suzuki¹⁰, Y Takahashi⁹, M Takeda⁹, A Taketa⁹, M Takita⁹, Y Tameda³, H Tanaka¹¹, K Tanaka²⁴, M Tanaka¹⁰, JR Thomas¹, SB Thomas¹, GB Thomson¹, P Tinyakov^{12,21}, I Tkachev¹², H Tokuno⁹, T Tomida², R Torii⁹, S Troitsky¹², Y Tsunesada³, Y Tsuyuguchi², Y Uchihori²⁵, S Udo¹³, H Ukai², B Van Klaveren¹, Y Wada¹⁴, M Wood¹, T Yamakawa⁹, Y Yamakawa⁹, H Yamaoka¹⁰, J Yang¹⁹, S Yoshida¹⁸, H Yoshii²⁶, Z Zundel¹ ¹University of Utah, ²University of Yamanashi, ³Tokyo Institute of Technology, ⁴Kinki University, ⁵Rutgers University, ⁶Hanyang University, ⁷Tokyo University of Science, ⁸Yonsei University, ⁹Institute for Cosmic Ray Research, University of Tokyo, ¹⁰Institute of Particle and Nuclear Studies, KEK, ¹¹Osaka City University, ¹²Institute for Nuclear Research of the Russian Academy of Sciences, ¹³Kanagawa University, ¹⁴Saitama University, ¹⁵Tokyo City University, ¹⁶Pusan National University, ¹⁷Waseda University, ¹⁸Chiba University ¹⁹Ewha Womans University, ²⁰Chungnam National University, ²¹University Libre de Bruxelles, ²²University of Tokyo, ²³Kochi University, ²⁴Hiroshima City University, ²⁵National Institute of Radiological Science, Japan, ²⁶Ehime University ### **Outline** - Surface detector configuration - Simulation program - Dethinning - Spectral event set generation - Event reconstruction - Lateral distribution function - Data/Simulation comparisons - Energy spectrum estimation ## Telescope Array Surface Detector Configuration - Located 200 km SW of Salt Lake City - 507 surface units on 1.2 km rectangular grid - Total area: 680 km² - SD augmented by 3 air fluorescence stations - SD commissioned in May 2008 ### SD Configuration: Surface Detector Unit - 3 m² bi-layer scintillator - 2 channel 50 MHz ADC readout - Self-calibrating (via atmospheric μ⁺μ⁻) - Solar power - Radio Communications - Most units require servicing less than once per year ### SD Configuration: Surface Array Triggering - Level 0: ~0.3μ equivalent (740 Hz) - Readout 2.5 μsec waveform to counter buffer - Level 1: 3μ equivalent (30 Hz) - Readout L1 trigger time to central DAQ - Level 2: 3 adjacent counters with L1 trigger within 8 μsec (5 mHz) - Readout to central DAQ all L0 trigger waveforms within ±32 μsec of L2 trigger ### SD Configuration: Surface Detector Milestones - 485 counters deployed: Mar 2007 - Test with 3 small arrays: Jun 2007 - Observations with 507 counters divided into 3 sub-arrays: Mar 2008 - Thresholds stabilized: May 2008 - Observations with full array trigger: Nov 2008 ### **Simulation Program** - CORSIKA 6.960 QGSJET-II/FLUKA - Parallelization - Dethinning - GEANT4 - Superb detail - Very computationally intensive ### Simulation Program: Augmentations to CORSIKA - Parallelization - Wrapper scripts and binaries - CORSIKA itself left untouched - 100+ showers - 10^{18.5} to 10^{19.5} eV - 0° to 60° zenith - p, Fe ### Simulation Program: Augmentations to CORSIKA - Dethinning - Change each CORSIKA output particle of weight w to w particles with similar characteristics to the original particle - Adjust dethinning parameters to agree with full CORSIKA generated via parallelization ### Verifying Dethinning: Lateral Profile Proton, 10¹⁹ eV, 30° zenith angle # ateral istance 1400m ### **Verifying Dethinning: Temporal Distribution** t₅₀ (μsec normal to shower front) ## Verifying Dethinning: Secondary γ Spectra Secondary Particle Energy: 250keV to 1 TeV ### Verifying Dethinning: Secondary e⁺e⁻ Spectra Secondary Particle Energy: 250keV to 1 TeV ### Verifying Dethinning: Secondary μ⁺μ⁻ Spectra Secondary Particle Energy: 250keV to 1 TeV ### Simulation Program: Reproducing the Real Data Set - CORSIKA shower library: - 33,000 dethinned showers - 10^{17.1} to 10^{20.5} eV - Isotropic distribution - Calculate energy deposition for entire shower - GEANT4 - Simulate SD electronics repeatedly for each library element - Select events for data set with respect to previously measured energy spectrum ### SD Analysis: A Careful Analysis Method - Simulate the data the same way it is observed. - Write out the MC events in same format as data. - Use fitting functions observed by previous experiments (i.e. AGASA) to ensure model independence. - Analyze the MC with the same programs used for data. - Test with data/MC comparison plots. - If they agree, say: "I understand my detector"; otherwise, work harder. ### SD Analysis: Geometric Fit Event direction is found by minimizing: $$\chi^{2} = \sum_{i=1}^{\text{nSDs}} \frac{\left(t_{i} - T_{0} - T_{\text{Plane}} - T_{\text{D}}\right)^{2}}{T_{\text{S}}^{2}} + \frac{\left(\vec{\mathbf{R}} - \vec{\mathbf{R}}_{\text{COG}}\right)^{2}}{\left(180\text{m}\right)^{2}}$$ $T_{\scriptscriptstyle 0}$ Time of the core hitting ground $T_{ m Plane}$ Time of the shower front plane $T_{ m D}$ Time delay (Modified Linsley) T_S Fluctuation of time delay (Modified Linsley) $\vec{\mathbf{R}}$ (Fitted) core position Core position found from the center of gravity of charge ### SD Analysis: Lateral Distribution Fit #### Fit with AGASA LDF $$ho(r) \propto \left(rac{r}{R_M} ight)^{-1.2} \left(1 + rac{r}{R_M} ight)^{-(\eta - 1.2)} \left\{1 + \left(rac{r}{1000} ight)^2 ight\}^{-0.6}$$ $$\eta = (3.97 \pm 0.13) - (1.79 \pm 0.62) (\sec \theta - 1)$$ $$r = 800m$$ # fit residual over sigma ## SD Analysis: Fitting Results Counter signal, [VEM/m²] - Identical analysis routines are applied to data and Monte Carlo - Fit results are compared between real and simulated events - Monte Carlo fits the exact same way as the real data. - Consistent for both geometric and lateral density fits. ### SD Analysis: Data Quality Cuts - Good data fits: - $\chi^2/\text{d.o.f.}$: > 4.0 - Pointing direction resolution: < 5° - Fractional S800 uncertainty: < 25% - Good shower geometry: - Border Cut > 1200m - Zenith Angle Cut: < 45° - 1.75 years, 6264 events. ### SD Analysis: Energy Determination - Energy determination table is constructed from the fitting results of the Monte Carlo. - First estimation of the event energy is done by interpolating between S₈₀₀ vs. secθ isoclines. ### SD Analysis: Data/MC Comparisons 46296 0.9492 0.5857 Entries Underflow Overflow Mean RMS charge/SD, w/o saturated SDs, $\frac{\chi^2}{400}$ <4, bd/st>1200m, ngsd>=5, 0<45°, pderr<5°, $\frac{\alpha_{800}}{8,000}$ <0.25, log $(\frac{E}{400})$ >18.0 4000 3500 3000 2500 1500 LDF fit χ^2/dof **VEM** / counter ### SD Analysis: Data/MC Comparisons Zenith Angle, [Degree] Zenith angle **Azimuthal angle** ### SD Analysis: Data/MC Comparisons S₈₀₀ **Energy** ### SD Analysis Angular Resolution ### SD Analysis: Energy Resolution log (E/eV) 18.5 ## SD Analysis: Energy Scale - Energy scale is more accurately by FD than by simulation - Set SD energy scale to Middle Drum (i.e. HiRes-I) FD energy scale using wellreconstructed events seen by both detectors: - 27% renormalization. ### TA Surface Detector Energy Spectrum ### SD Energy Spectrum: GZK Feature - Assume no GZK cutoff and extend the broken power law fit beyond the break - Apply this extended flux formula to the actual TASD exposure, find the number of expected events and compare it to the number of events observed in log₁₀E bins after 10^{19.8}eV bin: $$- N_{EXPECT} = 18.4$$ $$-N_{OBSERVE} = 5$$ PROB= $$\sum_{i=0}^{5} Poisson(\mu = 18.4; i) = 2.41 \times 10^{-4}$$ ## SD Energy Spectrum: Comparison ## SD Energy Spectrum: Comparison ## SD Energy Spectrum: Comparison ## Conclusion: A Work in Progess - TA possesses the largest aperture for UHECR's in the Northern Hemisphere. - SD energy spectrum measurement shows good agreement with results previously reported by HiRes. - Data collection is ongoing. ### **Acknowledgments** ### 文部科学省 MEXT MINISTRY OF EDUCATION, CUSTURE, SPORTS, SCIENCE AND TECHNOLOGY-JAPAN