# Probing the Ultra-High Energy Universe with Radio and Microwave Signatures: ANITA, AMBER and AERA

The Symposium on the Recent Progress of Ultra-High Energy Cosmic Ray Observation

> Amy Connolly The Ohio State University Dec. 12<sup>th</sup>, 2010

# The High Energy Universe



No cosmic neutrino flux observed

## Neutrinos: Current Limits



#### Expect UHE v flux from "GZK" $P^+\gamma_{CMB} \rightarrow \Delta^* \rightarrow n \pi^+$

AMANDA:

>10<sup>18</sup> eV

Visible Cerenkov in deep ice Auger, HiRes: Search for earth skimming  $v_{\tau}$ **RICE, ANITA: Radio Cerenkov: Best limits for energies** 

## Radio Cerenkov Technique: Gurgen Askaryan (1962)

- Coherent Cerenkov signal from net "current," instead of from individual tracks
- A ~20% charge asymmetry develops:
  - Compton scattering:  $\gamma$  + e-(at rest)  $\rightarrow \gamma$  + e-
  - Positron annihilation:  $e^+ + e^-(at rest) \rightarrow \gamma + \gamma$
- Excess moving with v > c/n in matter
  - → Cherenkov Radiation dP  $\propto$  v dv
- If  $\lambda >> R_{Moliere} \rightarrow Coherent Emission$  $~ N^2 ~ E^2$

 $\lambda > R_{Moliere} \rightarrow Radio/Microwave Emission$ 

Macroscopic size:  $R_{Moliere} \approx 10$  cm, L ~ meters



This effect has been confirmed experimentally PRL 86, 2802 (2002) PRD 72, 023002 (2005) PRD 74, 043002 (2006) PRL 99, 171101 (2007)

# Long Attenuation Lengths

# Askaryan also suggested three radio-clear detection media: ice, salt, sand



## Measurement of Radio Cerenkov Emission Produced Askaryan pulses in ice from 28.5 GeV electron beam at SLAC



#### ~10<sup>9</sup> particles per bunch → 10<sup>19</sup>- 10<sup>20</sup> eV showers





From there, ANITA was off to Antarctica...



ANITA observes ~1.5 x 10<sup>6</sup> km<sup>2</sup> of ice at once! ANITA I: 2006-2007 ANITA 2: 2008-2009 ANITA 3: 2012-2013

## The Face of ANITA



Battery box (Art by residents of McMurdo)





Solar cells for NASA equipment

Anita I:

- 32 Quad-ridge horn antennas in 3 layers
  - 200 MHz to 1200 MHz
  - 10 degree down angle
- Anita 2: 40 horns in 4 layers

8 low gain antennas to monitor payload-generated noise

ANITA electronics box (mirrored to minimize solar heating)

Power for science mission

"instrument paper": arXiv:0812.1920 [astro-ph]

#### Stephen Hoover, APS April Meeting 2008

## **ANITA Collaboration**









# **ANITA Flights**

ANITA 1: 2006 - 2007 18 days good livetime 1.2 km average depth





## ANITA 2:

2008-2009 8 more antennas Lower noise amplification Directional mask Optimized trigger





# Signal Acquisition



- Trigger: Signal divided into frequency sub bands (channels)
  - Powerful rejection against narrow bandwidth backgrounds
  - Multi-band coincidence allows better noise rejection
- 8 channels/ antenna
- Require 3/8 channels fire for antenna to pass L1 trigger (~150 kHz)
- Global trigger analyzes information across antennas (~5-10 Hz)



## **Event Reconstruction: Cross-Correlation**



## Reconstruction



## Anita 1: Reconstructed Events



# Analysis Cuts

- To reduce backgrounds:
  - Quality cuts
  - Cuts to reduce misreconstructions
  - Thermal noise reduction
  - Not associated with a base or another event



## Anita Results Vertical Polarization (neutrino search) Expected Background Observed Events Anita I: Anita 2: Horizontal Polarization (cosmic rays) Expected Background Observed Events 2 16 Anita I: Anita 2: no H-pol trigger

## Geosynchotron Emission of CRs

Charged particles in cosmic ray showers:

 $F = qv \times B$ 

Near South magnetic pole → field points "up"





 $B_{vertical} = 30-60 \ \mu T$ 

$$B_{horizontal} = 0-20 \ \mu T$$

- •H-pol emission
- Always the same polarity
- Reflected off snow surface



## Anita 3



#### **Goals:**

- Improve 16→ O(100)
  UHECR events
- •Neutrino events!
- •Optimized separate V-pol (neutrino) and H-pol (CR) triggers
- More antennas
- •More remote pulsers for calibration

## **UHECR Detection Methods at Auger**



# AMBER

- P.W. Gorham et al., PRD 78, 032007 (2008): Microwave emission from electromagnetic showers at accelerators
- 4-channel prototype built; observed small number of possible sources
- Prototype was expanded to attempt to observe showers in coincidence with Auger







#### Microwave Bremstrahlung: Beam Experiments SLAC T471 experiment





28 GeV electron beam on 90% Al<sub>2</sub>O<sub>3</sub>, 10% SiO<sub>2</sub>
 target producing ion plasma in chamber

• Shower E  $\sim 6 \times 10^{17} \text{ eV}$ 







# AMBER: Collaboration

- •Ohio State University
- •P.S. Allison, J.J. Beatty, E.W. Grashorn,
- N. Griffith, J. Mayer, C. Morris
- •University of Hawaii
- •X. Gao, P.W. Gorham, J. Kennedy, L. Macchiarulo, C. Miki, L.L. Ruckman, G.S. Varner

•

•Also thanks to X. Bertou for FastCt at Auger, trigger client, studies regarding maximum latency

# AMBER Configuration

- •2.4 m offset feed paraboloid
- •Minimize matter in beam
- •Cold sky in sidelobes, low emissivity dish
- 30 degree lookup angle
- •16 Feedhorns
- •4 C & Ku band dual polarization
- •12 C band single polarization
- •Deep buffer- cross triggering from Auger Surface Detector slide by Patrick Allison

Sunday, December 12, 2010



C band: 4-8 GHz Ku band: 12-18 GHz

# AMBER Sun Transit Observation



# AMBER/Auger UHECR Detection $(x_{c}, y_{c}, z_{c}, t_{c}),$

 $(t_{shower} \pm \mathscr{F} t_{window})$ 

Particle cascade detected at ground by Auger surface detectors Trigger is formed when 3 nearby stations register a certain trigger type within ~few  $|\mu S$ Times, locations of stations sent to AMBER from Auger (after ~ 3 seconds)] AMBER software computes estimate of incoming shower direction, core location/time From core location/time + direction, software then computes when shower was in field of view AMBER hardware then extracts that time window from a ~5 second data buffer

#### slide by Patrick Allison

# AMBER Current Status

- UH rooftop setup taken down after ~1 month of stable, final operation
  - No real candidates noise environment worse than previous years
  - Completed several observations of sun transit, scans of C-band satellites, and astronomical source observations
    - Astronomical sources (non-Sun) need better averaging/filtering currently in progress
- Auger first-step integration basically done
  - FastCt interface ~done (just need to wrap network transport)

AMBER hardware shipped to Argentina for data taking

## AERA

### **Science Goals**

Probe the nature of cosmic rays at the transition region with a novel independent detection technique

Realize a large scale Radio Detector



Understand the details of the radio emission processes

Explore the Potential of the Radio Detection Technique

Realize combined detection of air showers at Auger "Super-Hybrid": Radio + SD + FD



slide by Stefan Fliescher

## The AERA Group





Stefan Fliescher

13

#### **Overview: Pierre Auger Observatory**



## Impressions from the AERA Site



Stefan Fliescher

#### **Event Rates**



slide by J. Kelley

## Summary & Outlook

#### Large Radio efforts at Auger

Midas & Amber have approval to set up at the Auger site and start first coincident measurement with SD and FD

#### Auger Engeneering Radio Array

10 Institutes 161 Radio Detector Stations, 20 km<sup>2</sup> Phase 1: 24 stations

- Data taking scheduled for August
- → Details of Radio emission
- → Potential of Radio
- → Nature of cosmic ray at the transition region

#### ' Super-Hybrid ': Unique possiblity to study UHECRs



Stefan Fliescher

## Conclusions

- Radio Cerenkov technique well established for neutrino searches, ANITA sets world's best limits >10<sup>18</sup> eV
- Geosynchotron technique coming on the scene for UHECR detection
- Microwave Bremstrahlung also promising technique for UHECR detection, first AMBER, MIDAS stations ready for data taking

Radio/Microwave techniques could provide much needed data complementary to other techniques